Fundamentals of Process Control Systems

Lecture -1

Prof. Dr. Shahid Naveed

Pakistan Engineering Council
Islamabad
Sequence of Presentation

1. Why Process Control?
2. What to Control?
3. Role of Sensors and Instruments
4. Modes Of Control Systems
5. Basics of Feedback Control Systems
6. Examples of Servo Control Systems
7. Conclusions
1. Why Process Control?

1. Safety of Equipment and Personnel
2. Productions Specification of quality & quantity
3. Operational Constraints
4. Observe Environmental and Country Laws
5. Economics
Control Objectives

1. Safety of Equipment & personnel
2. Production Specification of quality & quantity
3. Operational Constraints
4. Environmental Regulations
5. Economics

Give example

Vapor Product

Liquid product
Safety of Equipment & Personnel

1. Safety of Equipment & Personnel

2. Production Specification of quality & quantity

3. Operational Constraints

4. Environmental Regulations

5. Economics

High pressure in drum is dangerous

Vapor Product

Liquid product

Process fluid

Steam

Feed

T1 T2 T4 T5 T3 L1

F1 F2 F3

A1

PC

L. Key

PEC –UET Lahore
Dr. Shahid Naveed
9. April 2009 /

Dr. –Ing Naveed Ramzan
Control Objectives

1. Safety of Equipment & personnel
2. Production Specification of quality & quantity
3. Operational Constraints
4. Environmental Regulations
5. Economics
1. Safety of Equipment & personnel

No flow could damage the pump

2. Production Specification of quality & quantity

3. Operational Constraints

4. Environmental Regulations

5. Economics
1. Safety of Equipment & personnel
2. Production Specification of quality & quantity
3. Operational Constraints
4. Environmental Regulations
5. Economics

Always keep the production rate smooth.

Feed

Process fluid

Steam

Vapor Product

Liquid product

PEC –UET Lahore
Dr. Shahid Naveed
9. April 2009 /
Dr. –Ing Naveed Ramzan
Quality Assurance

1. Safety of Equipment & personnel

2. Production Specification of quality & quantity

3. Operational Constraints

4. Environmental Regulations

5. Economics

Give Example
Quality Assurance

1. Safety of Equipment & personnel
2. Production Specification of quality & quantity
3. Operational Constraints
4. Environmental Regulations
5. Economics

Achieve L.Key by adjusting the heating

Vapor Product

Liquid product
Observe Environmental and Other Regulations

1. Safety of Equipment & personnel
2. Production Specification of quality & quantity
3. Operational Constraints
4. Environmental Regulations
5. Economics

- Never release hydrocarbons to atmosphere

Diagram:
- Process fluid
- Steam
- Vapor Product
- Liquid product
- T1, T2, T3, T4, T5, T6
- F1, F2, F3
- L1
- A1

PEC –UET Lahore
Dr. Shahid Naveed
9. April 2009
Dr. –Ing Naveed Ramzan
1. Safety of Equipment & personnel

Give Example

2. Production Specification of quality & quantity

3. Operational Constraints

4. Environmental Regulations

5. Economics

Evaporator

Vapor Product

Liquid product

Process fluid

Steam
1. Safety of Equipment & personnel
2. Production Specification of quality & quantity
3. Operational Constraints
4. Environmental Regulations
5. Economics

Give Example

Use the least costly heating

Feed

Process fluid

Steam

Liquid product

Vapor product
2. What to Control?

1. The Influence of External Disturbances (Suppress Them)

2. Ensure Stable Operation (Avoid Unsteady State)

3. Optimized Operation (Control Operating Costs)
Suppress the Influence of External Disturbances

Disturbances?

1. To keep the effluent temperature T at a desired value T_s
2. To keep the volume of the liquid in the tank at a desired value V_s
Ensure Stable Operation

(a)

(b)

(3)

(2)

(1)

t_0

Time t

Time t

y

y
Ensure Stable Operation (cont’d)

\[c_{A_1}, T_1, F_1 \]

Reactant

\[F_c, T_c, F_c \]

Coolant

\[F_c, T_c, F \]

Product

\[c_A, T, F \]

Heat/time

\[Q_1, Q_2, Q_3 \]

Temperature

\[T_1, T_2, T_3 \]

Stable

Unstable

Heat removed by cooling

Heat removed by exothermic reaction
maximize $\Phi = \int_{0}^{t_R} \{[\text{revenue from the sales of product B}] - \text{cost of steam}\} \, dt + \text{cost of purchasing A}$
Potential Stochastic Gains through effective Process Control

When we control a process, we reduce the variability.
Potential Stochastic Gains through effective Process Control (Cont’d)

Variability is moved from controlled to manipulated variable!

With feedback control

Composition (% H. Key)

Reflux valve
What statistics can we calculate from this data?

How do we relate variability to process performance?
Potential Stochastic Gains through effective Process Control (Cont’d)

Process performance efficiency, yield, production rate, etc. It measures performance for a control objective.

Calculate the process performance using the distribution, not the average value of the key variable!
3. Role of Sensors and Instruments

A typical instrument has three components:

- A Sensor
- A Modifier
- A Display (Or transmitting arrangement)

Sensors feel the condition and originate the signal followed by modification and amplification for effective display or transmission.
Comment on Sensors and Instruments

- Instruments are the eyes of engineer/operator that can see & feel the intense process variable inside the vessels.

- Accordingly the measurements should be reliable and as close to actual condition as possible with reasonable costs.

- Process control go hand in hand

 "If you cannot measure you cannot control!"
4. Modes of Control Systems

- Feedback Control Systems (Regulatory)
- Feedforward Control Systems (Servo, Tracking)
- Sequential Control System
- Distributed
- Integrated

Modes of Implementation

- Pneumatic
- Electronic
- Digital
Basics of feedback control system

Desired value

CONTROLLER

FINAL ELEMENT

PROCESS

SENSOR

Inputs

Outputs

Controller mechanism

y_{sp}

e

y_m

y

d

Final control element

Process

Measuring device

e
Examples of feedback system

FC for flow control

Controller mechanism

Orifice plate

Controller

DP cell

Controller mechanism

Orifice plate
Examples of feedback system
Examples of feedback system

LC for liquid-level control

[Diagram of a feedback system for liquid-level control]
Examples of feedback system

TC for temperature control
Examples of feedback system

CC for composition control
Example of Temperature Control (Heat exchanger)
Example of Composition Control
Where is Control Done?

![Diagram of control system with labels: Local manipulation, Local display, Sensor, Cables potentially hundreds of meters long, Displays of variables, calculations, and commands to valves are in the centralized control center, Sensors, local indicators, and valves in the process.]

Figure 12

Shows a modern, computer-based control panel.
Control System Implementation

- Analog and local Control
- Microprocessor based Distributed Control
- Field Bus based Distributed Control System
 (State of art with ever growing capabilities and features!)
When Control and Monitoring Were Local and Analog; Not All Control Panels Were In the Control Room
Control Systems Implementations In Industry
Control Systems Implementations In Industry
Open for discussions
Sensors & Instrumentation

Lecture -2

Dr. –Ing. Naveed Ramzan
Instruments are our eyes

- Performance characteristics of Instruments

- Principle measurements desired in industry

(a) Temperature
(b) Pressure
(c) Level
(d) Flow
(e) Others (Composition, pH etc.)
Human natural observation capabilities are generally not designed for process conditions.

Instruments must have desired capabilities to match process conditions.

Process Control has the role of a decision makers (Like brain)

Sensors feel the condition and originate the signal followed by modification and amplification for effective display /transmission or control objectives.
Importance of effective measurement in process industry
Failure to measure effectively the level of liquid in bottom of the tower lead to

--- Fire

--- Explosion
Typical components of instrument

- **A Sensor**: measures a physical quantity and converts it into a signal
- **A Modifier**: Change the type of signal
- **A Display unit**: transmitting arrangement
Functional Elements of an Instrument

Process/Measured medium

Primary Sensing Element → Variable Conversion Element → Variable Manipulation Element

Data Transmission Element → Data Presentation Element

Observer
Typical Example:

![Diagram of a temperature measurement instrument with labeled parts: Gear mechanism, Pointer, Spiral bourdon-tube, Capillary tube, and Temperature bulb (liquid or gas).]
Functional Elements of an Instrument (Cont’d)

Fluid → Temperature Measured Quantity → Primary Sensing Element → Variable Conversion Element → Pressure → Data Transmission Element

Process/Measured medium → Variable Conversion Element → Variable Manipulation Element → Motion → Linkage Gear

Temperature Tube

Pressure

Observer

Spiral Bourdon Tube

Linkage Gear

Scale & Pointer
Performance Characteristics of Instruments

- Static characteristics
- Dynamic characteristics
Static characteristics

Static characteristics of an instrument includes:

- Accuracy
- Precision
- Repeatability
- Range
- Resolution
- Others (Sensitivity, Dead zone etc.)
Static characteristics of an instrument includes:

1. **Accuracy**

 - The ability of a device or a system to respond to a true value of a measured variable under reference conditions.
 - In general accuracy expressed as “Limit of Error”
Static characteristics of an instrument includes:

2. Precision

- Precision is the degree of exactness for which an instrument is designed or intended to perform.
- It is composed of two characteristics:
 1. Conformity
 2. Number of significant figures
3. Repeatability

Repeatability is the variation in measurements taken by a single person or instruments on the same item and under the same conditions.
Assigning standard values to an equipment is calibration.
Dynamic characteristics of an instrument includes:

1. Speed of response
2. Fidelity
3. Lag
4. Drift
Principle measurements desired in industry

(a) Temperature

(b) Pressure

(c) Level

(d) Flow

(e) Others (Composition, pH etc.)
“It is time to turn up the heat but first you must learn how to measure it”
1. Thermocouples
2. Thermistors
3. Electrical resistance change (RTD)
4. Expansion of materials
5. Pyrometers
Seebeck Effect:

The generation of current in a circuit comprising of two wires of dissimilar metals in the presence of temperature difference.
TCs are identified by a single letter type and grouped according to their temperature range

- Base Metals – up to 1000 °C
 - Type J, Type E, Type T, Type K
- Noble Metals – up to 2000 °C
 - Type R, Type S, Type B
- Refractory Metals – up to 2600 °C
 - Type C, Type D, Type G
Metal Combinations

<table>
<thead>
<tr>
<th>TC Type</th>
<th>Colours</th>
<th>Range °C</th>
<th>Positive Lead (Coloured)</th>
<th>Negative Lead (all Red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>White/Red</td>
<td>-210 to 1200</td>
<td>Iron</td>
<td>Constantan</td>
</tr>
<tr>
<td>E</td>
<td>Purple/Red</td>
<td>-270 to 1000</td>
<td>Chromel</td>
<td>Constantan</td>
</tr>
<tr>
<td>T</td>
<td>Blue/Red</td>
<td>0 to 400</td>
<td>Copper</td>
<td>Constantan</td>
</tr>
<tr>
<td>K</td>
<td>Yellow/Red</td>
<td>-270 to 1372</td>
<td>Chromel</td>
<td>Alumel</td>
</tr>
<tr>
<td>R</td>
<td>Black/Red</td>
<td>-50 to 1768</td>
<td>Platinum-13% rhodium</td>
<td>Platinum</td>
</tr>
<tr>
<td>S</td>
<td>Black/Red</td>
<td>-50 to 1768</td>
<td>Platinum-10% rhodium</td>
<td>Platinum</td>
</tr>
<tr>
<td>B</td>
<td>Grey/Red</td>
<td>0 to 1700</td>
<td>Platinum-30% rhodium</td>
<td>Platinum-6% rhodium</td>
</tr>
<tr>
<td>C</td>
<td>White-Red/Red</td>
<td>0 to 2320</td>
<td>Tungsten/5% rhenium</td>
<td>Tungsten 26% rhenium</td>
</tr>
</tbody>
</table>

Chromel = Nickel-chromium
Alumel = Nickel-aluminum
Constantan = Copper-nickel
Thermocouple Tables

Type T Thermocouple (Blue & Red) Reference Junction 0 °C

<table>
<thead>
<tr>
<th>°C</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.039</td>
<td>0.078</td>
<td>0.117</td>
<td>0.156</td>
<td>0.195</td>
<td>0.234</td>
<td>0.273</td>
<td>0.312</td>
<td>0.352</td>
</tr>
<tr>
<td>10</td>
<td>0.391</td>
<td>0.431</td>
<td>0.470</td>
<td>0.510</td>
<td>0.549</td>
<td>0.589</td>
<td>0.629</td>
<td>0.669</td>
<td>0.709</td>
<td>0.749</td>
</tr>
<tr>
<td>20</td>
<td>0.790</td>
<td>0.830</td>
<td>0.870</td>
<td>0.911</td>
<td>0.951</td>
<td>0.992</td>
<td>1.033</td>
<td>1.074</td>
<td>1.114</td>
<td>1.155</td>
</tr>
<tr>
<td>30</td>
<td>1.196</td>
<td>1.238</td>
<td>1.279</td>
<td>1.320</td>
<td>1.362</td>
<td>1.445</td>
<td>1.486</td>
<td>1.528</td>
<td>1.570</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.612</td>
<td>1.654</td>
<td>1.696</td>
<td>1.738</td>
<td>1.780</td>
<td>1.823</td>
<td>1.865</td>
<td>1.908</td>
<td>1.950</td>
<td>1.993</td>
</tr>
</tbody>
</table>
Thermistor, a word formed by combining thermal with resistor, is a temperature-sensitive resistor fabricated from semiconducting materials.

The resistance of thermistors decreases proportionally with increases in temperature.

The operating range can be -200°C to +1000°C.
Thermistors

- The thermistors can be in the shape of a rod, bead or disc.

- Manufactured from oxides of nickel, manganese, iron, cobalt, magnesium, titanium and other metals.
Thermistors

Advantages:
- Small sizes and fast response
- Low cost
- Suitability for narrow spans

Disadvantages:
- More susceptible to permanent decalibration at high temperatures.
- Use is limited to a few hundred degrees Celsius.
- Respond quickly to temperature changes, thus, especially susceptible to self-heating errors.
- Very fragile
RTD (Resistance Temperature Detector) is a temperature sensitive resistor.

- It is a positive temperature coefficient device, which means that the resistance increases with temperature.
- The resistive property of the metal is called its resistivity.

The industry standard is the platinum wire RTD (Pt100) whose base resistance is exactly 100.00 ohms at 0.0 °C.
Platinum Wire RTDs (PRTs)

PRTs have established themselves as the de-facto industry standard for temperature measurement, and for many reasons:

- linear temperature sensors
- Resistance vs temperature characteristics are stable and reproducible
- linear positive temperature coefficient (-200 to 800 °C)
- very accurate and suitable for use as a secondary standard
Other RTDs

- 10 ohms **Copper** RTD - .00427 coefficients
- 100 ohms Platinum RTD - .00385 coefficients (new IEC)
- 100 ohms Platinum RTD - .00392 coefficients (old)
- 120 ohms **Nickel** RTD - .00672 coefficient
- 604 ohms **Nickel-Iron** RTD - .00518 coefficients

All base resistances are specified at a temperature of 0 degrees C
A Pt1000 will have a base resistance of 1000 ohms at 0 deg. C
Only practical if the RTD lead wires are short.

In many applications the RTD is located far from the conditioning circuit adding extra resistance because the length of the copper lead wire.

\[\text{Cu} = 0.0302 \, \Omega \text{ per ft.} \]

How much error will 100 ft length of Cu lead wire introduce?

Most RTD’s have an extra wire to compensate for the length of lead wire.
Not standardized but this is common colour arrangement. Some (like in the lab) will use BLK-BLK-RED

Recommended Colour Codes BS EN 60751:1996
Expansion Thermometers

- **Bimetallic Thermometer**

 (Expansion of solids)

 Effect of unequal expansion of a bimetallic strip

 - Different metals have difference coefficient.
 - Configured as spiral or helix for compactness
 - Can be used with a pointer to make an inexpensive compact rugged thermometer.
 Expansion Thermometers

Filled Thermal Systems
(Filled System Thermometer, Filled Bulb Thermometer)

Similar operation as the liquid in glass

- Bulb
- Capillary tube
- Pressure element
- Scale

Diagram:
- Spiral Type Bourdon Tube
- Capillary Tube
- Liquid Or Gas Filled Capillary
- Pointer
Filled Thermal System Classes
(Filled System Thermometer, Filled Bulb Thermometer)

- Class I A,B – Liquid filled
- Class II A,B,C,D – Vapour filled
- Class III A,B – Gas filled
- Class V A,B – Mercury Filled

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I: -125 F to +600 F</td>
<td>Slowest</td>
</tr>
<tr>
<td>Class II: -40 to 32 or 32 to 600 F</td>
<td>Fastest</td>
</tr>
<tr>
<td>Class III: -450 F to +1400 F</td>
<td>Fast</td>
</tr>
<tr>
<td>Class V: -40 F to +1200 F</td>
<td>Fast</td>
</tr>
</tbody>
</table>
Pyrometry is a technique for measuring temperature without physical contact. An apparatus for measuring high temperatures that uses the radiation emitted by a hot body as a basis for measurement.

- Radiation pyrometers (measurement of radiant energy)
- Optical Pyrometers (comparison of the intensities)
Summary of Temperature Sensor Characteristics

<table>
<thead>
<tr>
<th>Type</th>
<th>Linearity</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bimetallic</td>
<td>Good</td>
<td>Low cost, rugged, wide range</td>
<td>Local measurement, or for On/Off switching only</td>
</tr>
<tr>
<td>Resistance</td>
<td>Very good</td>
<td>Stable, wide range, accurate</td>
<td>Slow response, low sensitivity, expensive, self-heating, range</td>
</tr>
<tr>
<td>Thermistor</td>
<td>Poor</td>
<td>Low cost, small, high sensitivity, fast response</td>
<td>Nonlinear, range, self-heating</td>
</tr>
<tr>
<td>Thermocouple</td>
<td>Good</td>
<td>Low cost, rugged, very wide range</td>
<td>Low sensitivity, reference needed</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>Excellent</td>
<td>Low cost, sensitive, easy to interface</td>
<td>Low sensitivity, reference needed, slow response, range, power source</td>
</tr>
</tbody>
</table>
Pressure Sensors

“In any given plant, the number of pressure gauges used is probably larger than all other instruments put together”
1. Elastic pressure transducers

2. Electric pressure transducers

3. Pressure measurement by measuring vacuum

4. Pressure measurement by balancing forces produced on a known area by a measured force

5. Manometer method
1. Bourdon tube pressure gauge

2. Diaphragm pressure transducers

3. Bellows
Bourdon tubes are generally of three types:

1. **C-type**
2. Helical type
3. Spiral type
They are used to measure gauge pressures over very low ranges.

- Two types of diaphragm pressure gauges are:
 1. Metallic diaphragms gauge
 2. Slack diaphragms gauge
More sensitive than bourdon type gauge.

Used to measure low pressures
Electrical pressure transducers consists of three elements

1. Pressure sensing element such as a bellow, a diaphragm or a bourdon tube

2. Primary conversion element e.g. resistance or voltage

3. Secondary conversion element
Types of Electric Pressure Transducers

- Strain gauge pressure transducers
- Potentiometer pressure transducers
- Capacitive pressure transducers
A strain gauge is a passive type resistance pressure transducer whose electrical resistance changes when it is stretched or compressed.

A pressure transducer contains a diaphragm which is deformed by the pressure which can cause a strain gauge to stretch or compress. This deformation of the strain gauge causes the variation in length and cross sectional area due to which its resistance changes.

\[
V = \left(\frac{R_1}{R_1+R_4} \right) \cdot V_s - \left(\frac{R_2}{R_2+R_3} \right) \cdot V_s
\]
The sensing diaphragm and capacitor form a differential variable separation capacitor. When the two input pressures are equal the diaphragm is positioned centrally and the capacitance are equal. A difference in the two input pressure causes displacement of the sensing diaphragm and is sensed as a difference between the two capacitances.
It is a device that measures the differential pressure between two inputs.

- Depending on what class the DP-cell is, it will give you feedback with a current signal.
- Normal in Europe is 4-20 mA, where 4 is lowest and 20 is highest.
In a closed tank, the Low side of the d/P cell is connected to the top of the tank and will cancel the effects of the vapour pressure above the surface.

Closed Tank Measurement

- Lo side of the d/P cell measures the vapour pressure above the surface.
- Hi side measures the hydrostatic head pressure which is proportional to the height of the liquid and its density + vapour pressure
Level Measurement

Level is another common process variable that is measured in many industries. The method used will vary widely depending on the nature of the industry, the process, and the application.

Inventory:
-- a constant supply or storage of material

Control:
-- continuous, batch, blending, and mixing control
-- stabilize flow to the next process

Alarming:
-- hi/lo limits, safety shut down

Data Logging:
-- material quantities for inventory and billing purposes and where regulatory requirements are necessary
Methods ---- Direct or Indirect (inferential)

- Hydrostatic Head
- Float
- Load Cells
- Magnetic Level Gauge
- Capacitance Transmitters
- Magnetostrictive
- Ultrasonic
- Microwave
- Laser
- Radar
- Guided Wave Radar
- Dip Stick
- Vibration
When determining the type of level sensor that should be used for a given application, there are a series of questions that must be answered:

- Open tank or closed tank?
- Can the level sensor be inserted into the tank or should it be completely external? Contact or non-contact?
- Continuous measurement or point measurement?
- Direct or Indirect measurement?
- What type of material is being measured? Liquid or Solid? Clean or Slurry?
- Simple and cheap
- Can be used with any wet material and not affected by density.
- Can not be used with pressurized tanks
- Visual indication only (electronic versions are available)

RodGauge - similar to a dipstick found in a car, it has weighted line markings to indicate depth or volume
The pressure of the fluid in the tank causes the tape to short-circuit, thus changing the total resistance of the measuring tape. An electronic circuit measures the resistance; it's directly related to the liquid level in the tank.
Another simple direct method of measuring liquids.

Can be used in pressurized tanks (as long as the glass or plastic tube can handle the pressure)

Good for applications where non-contact measurement is needed (like beverages)
Used where the sight glass level gauge can not be used.

Magneto-resistive types can provide an electrical output.

Liquid/liquid interface (such as water and oil) can be measured by changing the buoyancy of the magnetic float.
Float rides the surface level to provide the measurement. Many different styles are available.

Liquid density does not affect measurement.
These methods infer level by measuring the hydrostatic head produced by the liquid column.

A pressure sensing element is installed at the bottom of the tank and pressure is converted to level.

Different liquid densities or closed tank applications must be accounted for.
Practical Considerations when using head type instruments

The reference point of the tank vs instrument input must be considered.

This may not be practical in some applications where the tank elevation is below grade or where a remote visual reading is required.
Bubblers allow the indicator to be located anywhere. The air pressure in the tube varies with the head pressure of the height of the liquid.

Can’t be used in closed tanks or where purging a liquid is not allowed (soap). Very popular in the paper industry because the air purge keeps the tube from plugging.
Not the same as a float.

The displacer is immersed in the tank and the buoyant force of the liquid produces a torque which is proportional to the amount of liquid level.

The output force can be converted to provide a proportional pneumatic or electrical continuous output of tank level.
Advantages and disadvantages

Low Cost
Conductive, non-coating liquids only
Insulating coatings can cause problems
Non-Contact direct level sensor

Level is a function of the time it takes an ultrasonic pulse to hit the surface and return

Limitations include:
- Surface foam absorbs signal, agitation create reflections
- High Pressure & High Temperatures affect the signal speed
- Vapour and condensate create false echo’s
Radar Level Sensors (Microwave)

Similar to ultrasonic but at a much higher frequency (6.3 GHz)

Various designs

-- Frequency Modulated
-- Continuous Wave
-- Pulsed Wave
-- Guided Wave

These sensors have better performance in applications where vapour, dust or uneven surfaces exist.
Tank level is determined by the weight of the quantity of material. Load Cells (strain gauge transducers) placed at the bottom of the tank measure the weight and then convert it to an electrical signal.
Flow Sensors
Plant control, for product quality and safety reasons.

Custody transfer, both interplant and selling to outside customers.

Filling of containers, stock tanks and transporters.

Energy, mass balancing for costing purpose and health monitoring of heat exchangers.

Health monitoring of pipelines and on-line analysis equipment, Government and company legislation may dictate the use here of such equipment.
Types of Flow Meters

- Differential Pressure Meters.
- Rotary Meters.
 1. Displacement
 2. Inferential
- New Flow Meters.
 1. Electromagnetic
 2. Vortex Shedding
 3. Ultrasonic
 4. Cross Correlation
 5. Tracer
 6. Swirl
 7. Fluidic
- Point Velocity Meters.
Differential Pressure Meters

- Orifice Plate
- Dall Tube
- Venturi Tube
- Pitot Tube
- Rota meter
- Target mater
- Averaging Pitot
- Nozzle
- Spring Loaded
- Intake Meter
- Elbow Meter
- Bypass Meter
Elbow Flow meter

Rota meter
Rotary Meters (Displacement Meters)

Displacement Meters
- Gear
- Oval wheel
- Vane Meter
- Gear (Roots)
- Diaphragm Meter
- Liquid Sealed Meter

Inferential Meters
- Turbine Meter
- Hoverflo Meter
Turbine Flow Meters
New Flow Meters

- Electromagnetic
 EM Meter

- Vortex Shedding Meter
 Vortex Generation Meter

- Ultrasonic Flow Meters
Magnetic Flowmeter

E = kBDV
Swirl Meter
Coriolis Mass Flowmeter
Others

- pH meter
- Turbidity Meter
- Dissolved oxygen meter
- Atomic absorption spectrophotometer
- Gas Chromatograph etc.
Discussion & Questions?
Design of Control Systems & Standard Practices

Lecture -3

Prof. Dr. Shahid Naveed
1. Design Objectives and Variables
2. Steps in Design of a Control System
4. Controller Selection & Tuning
5. Conclusion
Variables in a Chemical Process

Variables associated with a Chemical Process

Input Variables
(Denote the effect of the surrounding on the chemical process)

- Manipulated or Adjustable Variables
- Disturbances
 - Measured
 - Unmeasured

Output Variables
(Denote the effect of the process on the surrounding)

- Measured Output Variables
- Unmeasured Output Variables
Hardware for a process Control System
Steps in Design of a Control System

1. Define the control objective (Purpose)

2. Select the measurement variable/s
 (Primary / Secondary measurements, Easily, Rapidly, Reliably)

3. Select the manipulated variable/s (Utility/process)

4. Choose the control configuration (Configuration Standard/New)

5. Design/choose the controller
 (Degree of controllability desired)

6. Design of multiple input multiple output systems (MIMO)
General Control Configuration

Feedback control

![Feedback control diagram]

Feed-forward control

![Feed-forward control diagram]
Recommended Control Schemes and Standard Practices
Level Control
Level Control (cont’d)
Pump Control System (1)
Steam Turbine Driven Pump Control

Flow Control at a Centrifugal Pump Driven by a Steam Turbine
Flow Control at a Rotary Pump by a Discharge Valve and Spillback Valve

Flow Control at a Rotary Pump by FC and PC
Temperature Control of HE

Temperature Control of a Heat Exchanger (1)

Diagram showing temperature control with symbols for temperature (T) and flow (t) at different points in the system.
Temperature Control of HE (cont’d)

Temperature Control of a Heat Exchanger (2)

![Diagram of temperature control of a heat exchanger]

TC - Temperature Controller

T1, T2 - Temperature Levels

t1, t2 - Flow Rates

Dr. Shahid Naveed
PEC – UET Lahore

9. April 2009 / Dr. –Ing Naveed Ramzan
Temperature Control of HE (cont’d)

Temperature Control of a Heat Exchanger (3)
Temperature Control of HE (cont’d)

Temperature Control of a Heat Exchanger (5)
Pressure Control of Pressure Vessel

Pressure Control of Pressurized Vessel by the Vessel Outlet PCV

VE-1

PC

VE-2

P₂
Pressure Control of Pressurized Vessel by SR of Inert Injection and Vapor Discharge

Common for net zero vapor application.

SR may be configured with some gap.

Valve Stroke

Open

Close

V_1

V_2

gap

PC.mv

100
Steam Flow Control (Reboiler)

Steam Flow Control

Condensate Flow Control

NOTE: FI should be better located at the upstream of the reboiler from the layout’s viewpoint.
Cascade Control

Primary Controller

Secondary Controller

Dr. Shahid Naveed
PEC – UET Lahore

9. April 2009 / Dr. -Ing Naveed Ramzan

21
Split Range Control

Condenser Drum

SR

B

PC

SR

A

C

Off Gas to Flare

Fuel Gas

Condensate

Feed

Stem Travel

Open

Close

Controller’s Output

C

B

A
Ratio Control

Heater

Reactor

Steam

Hydrocarbon

FrC

FC

Effluent
Pressure Control of Distillation Tower (2)

- Inert Gas or Fuel Gas
- Off Gas to Vent or Flare
Pressure Control (Cont’d)

Pressure control of Distillation Tower (3)

[Diagram of pressure control system]
Controller Selection & Tuning Methods
Available Methods

- Ziegler-Nichols Tuning Technique
- Cohen-Coon Setting
- Quartering Technique
- Minimum Offset
- Minimum Integral Square Error ISE
- Minimum Integral Time Average Error ITAE
- Minimum Integral Average Error IAE
Ziegler-Nichols tuning technique

It is for closed response system.

<table>
<thead>
<tr>
<th></th>
<th>K_c</th>
<th>T_i (min)</th>
<th>T_d (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional</td>
<td>$K_u/2$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proportional integral</td>
<td>$K_u/2.2$</td>
<td>$P_u/1.2$</td>
<td>-</td>
</tr>
<tr>
<td>Proportional integral derivative</td>
<td>$K_u/1.7$</td>
<td>$P_u/2$</td>
<td>$P_u/8$</td>
</tr>
</tbody>
</table>

Where;
Ultimate gain = $K_u = \frac{1}{M}$
(M is the amplitude ratio for sustained oscillations)

Ultimate period = $P_u = \frac{2\pi}{W_c \circ \text{min/cycle}}$
Cohen Coon’s Method

\[K = \frac{B}{A} = \frac{Output}{Input} \]

(at steady state)

\[T = \frac{B}{S} \]

B = ultimate response, \(t_d \) = time elapsed until system started to response

S = slope of curve
Other Methods of Tuning Controllers

- Quartering
- Minimum Offset
- Minimum Integral-Square Error

\[ISE = \int_{0}^{\alpha} \varepsilon^2(t) dt \]

\[ITAE = \int_{0}^{\alpha} t|\varepsilon(t)| dt \]

\[IAE = \int_{0}^{\alpha} |\varepsilon(t)| dt \]
The general guidelines for tuning are as follows:

- If you want to strongly suppress the **Large Errors**, **ISE is better than IAE** because the errors are squared and that contribute more to the value of the integral.

- If you want to suppress the **Small Errors**, **IAE** is better than **ISE** because when square small numbers (smaller than one) they become even smaller.

- To suppress errors that persist for **Long Times**, the **ITAE criteria** will tune the controllers better because the presence of large “t” amplifies the effect of even small errors in the value integral.
Selecting the Best controller and the values of P, I, D
General Criteria to Select Feed Back Controller

- Define approximate performance criteria ISE, IAE or ITAE.

- Compute the value of the performance criteria using P or PI or PID controller with the best adjusted Kc, Ti, and Td.

- Select the Controller that gives the “BEST” value for the performance criteria.
If possible use simple proportional (P) controllers.

If simple Proportional action is unacceptable use a Proportional Integral (PI) controller.

Use a Proportional Integral Derivative (PID) control to increase the speed of response and retain robustness.
Critical Features of P, PI & PID Controllers.

Controlled variable, deviation from initial value

1. None
2. Proportional
3. Proportional-integral
4. Proportional-integral-derivative

Time, min

Offset
Design of Control System is a science and an art.

Recommended control practices play an important role in it.

The role of engineer stretches far beyond its design in application through understanding.
Open for discussions
Sequence of Presentation

- Basics of Computerized Control
- Essential components of computer control system
- Advantages of Computer Control
- Types of computer control implementation
Evolution of Process Control

- Touring the plant
- Pneumatic transmission
- Electronic miniaturization
Single Loop Control (SLC)

Feedback Control Loop

![Feedback Control Loop Diagram]

- Set point \(y_{SP} \)
- Controller
- Electropneumatic converter
- Final control element
- Measure sensor
- Process
- Disturbance \(d \)
- Controlled output \(y \)
Traditional Single Loop Controller
Single Loop Control (SLC) (Cont’d)

From Traditional Analog Controller to Computer Control

[Diagram showing the flow from set point to controller, D/A converter, hold element,-electropneumatic converter, final control element, process, and measuring sensor.]

d: discrete-time signal
c: continuous signal
Multiple loop Control
Essential Components of Computer Control

Actuators

Hold Amplifier

DA Converter

Multiplexer

Digital Computer

Operator Log

Process

Sensors

Instrumentation

Multiplexer

Amplifier/Attenuator

A D Converter

Essential Components of Computer Control

Dr. Shahid Naveed
9. April 2009 / Dr. –Ing Naveed Ramzan
Essential Components of Computer Control (Cont’d)

Diagram showing:
- Sampler
- Continuous signal
- Discrete-time signal
- Hold element
- Continuous signal
Types of Signal

- Original analog signal
- Sampled analog signal
- Digitized signal
Essential Components of Computer Control (Cont'd)

Central Processing Unit (CPU)
- Basic Features
 - Controllers
 - Arithmetic Unit
 - Logical Unit
 - Registers
- Options
 - Floating Point Processor
 - Real time Clock
 - Power fail-safe auto restart
 - Watchdog timer

Mass Storage
- Disks
- Fixed Head
- Moving Head
- Floppy
- Magnetic Tapes

Communication Peripherals
- Printers
- Type writers
- Video Display unit
- Graphic Terminals
- Card Reader
- X-Y Platters

Input-Output Interface
- Digital I/O
- Analog I/O

Memory
- Slow
- Fast
- ROM

Components of digital computer

Dr. Shahid Naveed
9. April 2009 / Dr. –Ing Naveed Ramzan
Essential Components of Computer Control (Cont’d)

Plant Inputs: Multiplexing

- Multiplexer (MUX)
- Analogue-to-digital converter (ADC)
- Control lines
- Digital inputs

Check input which might be a variable output from the computer.
Control System

Process control computer vs data processing computer
Monitoring System

Process control computer vs data processing computer

![Diagram of Monitoring System](Image)
Advantages of Computer Control

-- all plant data is available at a central point and/or distributed points around the plant or works

-- alarm conditions are detected and reported quickly

-- plant is run according to the plan set by management, which may not be the case where there is a lot of manual intervention

-- displays and printouts of information are available readily

-- changes to the operating conditions or recipes are made in smooth, repeatable and closely controlled manner
Advantages of Computer Control

-- written records of all alarms and operator actions are available for post-incident or routine analysis

-- alarm conditions are detected and reported quickly

-- control room and control panel size is reduced

-- all batches of material are treated identically

-- batch logs are recorded automatically

-- complex start-up and shut-down procedure can be automated

-- safety interlocks can be programmed into the system
Types of Computer Control Implementation

Direct Digital Control loop

![Diagram of Direct Digital Control loop](image-url)
Types of Computer Control Implementation

Direct Digital Control loop

- Analog Multiplexer unit
- Analog signals to & from field Transmitters and final control

- Digital Multiplexer unit
- Digital signals to & from field switches and final control element

- Central Processor

- Peripheral I/O Devices

- Bulk Memory Device
Types of Computer Control Implementation

Direct Digital Control loop

- Advantages:
 - Sophisticated control
 - Flexible control
 - Data acquisition and alarm

- Disadvantages:
 - Computer reliability
 - Redundant computer or controllers
 - Wiring complex and extensive
 - HMI required high-level operators
 - Expensive
Types of Computer Control Implementation

Digitally Directed Analog Control (DDAC)

- Supervisory computer control
Types of Computer Control Implementation

Digitally Directed Analog Control (DDAC)

- Supervisory computer control
Types of Computer Control Implementation

Simplified Diagram of supervisory control

- Analog Multiplexer unit
- Analog Multiplexer unit
- Digital multiplexer unit
- Digital multiplexer unit
- Operator console
- Operator console

Central Processor

Peripheral I/O Devices

Bulk Memory Device

Analog controllers and panel instrumentation
Centralized Computer System

Diagram showing a central computer connected to three plants (PLANT 1, PLANT 3, PLANT 4) with arrows indicating the direction of data transmission.
Types of Computer Control Implementation

Supervisory computer control

- **Advantages:**
 - High reliability
 - Human-machine interface adequate
 - Data acquisition and alarms
 - Sophisticated control
 - Complete redundancy

- **Disadvantages:**
 - Complex wiring and installation
 - Difficult to make strategy changes
 - Expensive
Types of Computer Control Implementation

Distributed Control System

- Central
 - many wires
 - programmed
 - vulnerable

- Distributed
 - data highway
 - configured
 - less risk (functional, physical)
Distributed Control System

Types of Computer Control Implementation
Types of Computer Control Implementation

Programmable Logic Controller

A programmable logic controller (PLC) is a specialized computer used to control machines and process.

It uses a programmable memory to store instructions and execute specific functions that include On/Off control, timing, counting, sequencing, arithmetic, and data handling.
Types of Computer Control Implementation

• Used to monitor process parameters and adjust process operations accordingly.
• A computer designed for use in machine control.
• Eliminates much of the hard wiring that was associated with conventional relay control circuits.
Types of Computer Control Implementation

Programmable Logic Controller

Parts of a PLC

- Central Processing Unit (brain)
- Memory
- Input / Output System
- Power Supply
- Programming Device
- Network Interface (optional)
Programmable Logic Controller

Typical PLC System Configuration:

Some Proprietary Network that passes as de facto
Physical and Communication Standard

Each Individually Configured

Must configure to communicate with each PLC, to link views, etc.
Programmable Logic Controller

Types of Computer Control Implementation

Programmable Logic Controller compared to older Technologies

- *Increased Reliability:*
- Once a program has been written and tested it can be downloaded to other PLCs.
- Since all the logic is contained in the PLC’s memory, there is no chance of making a logic wiring error.
Programmable Logic Controller compared to older Technologies

- More Flexibility:
- Original equipment manufacturers (OEMs) can provide system updates for a process by simply sending out a new program.
- It is easier to create and change a program in a PLC than to wire and rewire a circuit.
- End-users can modify the program in the field.
Types of Computer Control Implementation

Programmable Logic Controller compared to older Technologies

- **Communications Capability:**
- A PLC can communicate with other controllers or computer equipment.
- They can be networked to perform such functions as: supervisory control, data gathering, monitoring devices and process parameters, and downloading and uploading of programs.
Comparing DCS with PLC for ease of configuration

Typical PLC System Configuration:

Some Proprietary Network that passes as de facto
Physical and Communication Standard

Each Individually Configured

Must configure to communicate with each PLC, to link views, etc.

Typical DCS System Configuration:

Proprietary Network, often based upon a
Physicaal Standard

“Add-on” configured separately

Single database configured for all stations
Open System Configuration

Choice of open network flexibility or proprietary network security

Single distributed control strategy:
- Single configuration
- Each controller stores its own configuration, documentation,
tag names and HMI “calls”
- peer-to-peer links for complex strategies
- “bridge software” to populate HMI database

User choice;
Uploads control database for:
- Screen views
- Trends
- History
- etc.
Emerging (Ideal) Configuration:

- **PC as HMI**
- **Fieldbus open network flexibility**
- **Sensors**
- **Analyzer**
- **Valves**
- **Motors**
- **Multivariable Controller**

User choice:
- Configures control database and:
 - Screen Views
 - Trends
 - History
 - etc.

Smart transmitters, sensors, end elements:
- Multivendor within same system
- Common function blocks
 - configuration
 - documentation
 - tag names and HMI “calls”
 - peer-to-peer links for complex strategies
Integrated Computer Control System

Types of Computer Control Implementation
Types of Computer Control Implementation

Integrated Computer Control System for a paper and pulp mill

- Corporate Headquarter
- Mill Wide MIS
- Pulp Mill Central Control System
- Power Plant Central Control Computer
- Offline Computer System
- Data Highway
- Paper Machine Control Computer
 - No. 1 Paper Machine
 - No. 2 Paper Machine
- Digester Control Computer
- Pulp Mill
- Power Plant
- Others
Types of Computer Control Implementation

Traditional SCADA

- Field Instrumentation
- Remote Stations
- Communications Network
- Central Monitoring Station
Types of Computer Control Implementation

Water distribution system using SCADA
Discussion
Fundamentals of Distributed Control Systems

Lecture - 5

Prof. Dr. Shahid Naveed
Mainframe To Distributed Control

- Central
 - many wires
 - programmed
 - vulnerable

- Distributed
 - data highway
 - configured
 - less risk
 (functional, physical)

Central Mainframe Computer Grew to Distributed Computer
How does a DCS look like?

HLHI HLHI HLHI HLHI HLHI

Shared Communication Facility

LCU LCU LCU LCU DI/DO

LLHI LLHI LLHI LLHI

Process Transducers & Actuators

Process

General Purpose Computer

Interfacing Device

LCU Local Control Unit
LLHI Low Level Human Interface
1. The usual benefits of computer network on Ethernet (or like) are availed e.g. resource sharing (hard/soft), backup/archive, database updating, control algorithm computation, data logging etc.

2. Each Local Control Unit (LCU) is used to control the process variables. The information in shared through communication interfaces for multiple usage and Low/High Level Interfaces.

3. The High Level Human Interface (HLHI) is provided in the control room and for managerial applications throughout the plant.
Typical Benefits of DCS

- Scalability & Expandability of System
- Improved Control Potential
- Improved Operator Interface Capability
- Integration of System Function
- Single Point Failure
- Lower Installation costs
- Easy to Maintain
Local Control Unit Architecture

1. It is the smallest collection of hardware in a distributed control system that performs closed loop control.

2. LCU malfunctioning can cause a condition that is hazardous to both people and equipment its proper design is critical
Typical Requirements of LCU

- Flexibility of changing control configuration
- Ability to use the controller without being expert
- Ability to bypass the controller in case it fails so that the process can be controlled manually
- Ability of LCU to communicate with other LCUs and other elements of the system

Architectural Parameters of LCU

- Size of Controller
- Functionality of Controller
- Performance of Controller
- Communication channels out of Controller
- Controller Output Security
LCU A

Capacity:
10: Continuous
Function Blocks
40: Logic
Function Blocks

2 Analog inputs
4 Digital Inputs

Analogue outputs
Digital outputs
A LCU (Cont’d)

LCU B1

16 Analog inputs

…………

8 Analog outputs

Capacity:
40 Continuous Functions Blocks

LCU B2

32 Digital Inputs

…………

16 Digital outputs

Capacity:
160 Continuous Functions Blocks

16 Analog inputs

…………

32 Digital Inputs

…………

16 Digital outputs

…………

LCU B1

PEC –UET Lahore Dr. Shahid Naveed

9. April 2009 / Dr. –Ing Naveed Ramzan
A LCU (Cont’d)

<table>
<thead>
<tr>
<th>Capacity:</th>
<th>1280: Logic Function Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog inputs: 64</td>
<td>Digital Inputs: 128</td>
</tr>
<tr>
<td>Analog outputs: 32</td>
<td></td>
</tr>
<tr>
<td>Digital outputs: 64</td>
<td></td>
</tr>
</tbody>
</table>

LCU A
Architectural parameters of LCU

- Size of Controller
- Functionality of Controller
- Performance of Controller
- Communication channels out of Controller
- Controller Output Security

A large number of configuration are possible

- Single loop
- Two LCU types
- Multiple Loops
Comparison of Local Control Unit

Configuration LCU

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter of Controller</th>
<th>Single Loop</th>
<th>Two Types</th>
<th>Multiple Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Size of controller</td>
<td>Nos of functions needed for single PID loop</td>
<td>I/O needed for 8 control loops & a logic controller</td>
<td>System size is small</td>
</tr>
<tr>
<td>2</td>
<td>Functionality</td>
<td>Uses both analog & logic function blocks</td>
<td>Continuous & logic functions are split into two controllers</td>
<td>Uses both analog & logic function, can support high level language</td>
</tr>
<tr>
<td>3</td>
<td>Performance</td>
<td>Requirements can be met with inexpensive hardware</td>
<td>Because functional split, excessive performance is not possible</td>
<td>Hardware must be high performance to execute large data functions</td>
</tr>
<tr>
<td>4</td>
<td>Communication channels</td>
<td>Needed b/w various modules. Minimum human interface</td>
<td>Functional separation requires close interface b/w controller types</td>
<td>Large communication requirement to human interface</td>
</tr>
<tr>
<td>5</td>
<td>Security</td>
<td>Controller has single loop integrity</td>
<td>Lack of single loop integrity requires redundancy in critical application</td>
<td>Size of controller requires redundancy in all applications</td>
</tr>
</tbody>
</table>

Example

- **2 Analog Inputs**: 4 Digital inputs
 - Capacity (10-continuous function blocks & 40-logic function blocks)
 - 2 Analog output
 - 2 Digital output
 - Analog Inputs (16)
 - Digital Inputs (32)
 - Capacity 40 cont. func.
 - 8 Analog Outputs
 - (Two LCU)
 - 16 Digital Outputs
 - Analog Inputs (64)
 - Digital Inputs (128)
 - 32 Analog Outputs
 - 64 Digital Outputs
Typical cost effectiveness of architectures is estimated with each of the configuration:

- **Configuration-A**: 12 controllers are required
- **Configuration-B**: 3 controllers + 1 backup required
- **Configuration-C**: 2 controllers + 1 backup required
Typical cost effectiveness
Typical cost effectiveness

[Graph showing cost per function block for configurations A, B(B1), and C as a function of complexity (CCR).]
Control Complexity Ratio

Nos. of function blocks in control sys

\[\text{CCR} = \frac{\text{Nos. of control system output}}{\text{Nos. of control analog output}} \]

For complex system the CCR is 30-40
Other Architectural Issues

- How long each cable can be extended?
- How many communication channels the system can support?
- What kind of delay is expected?
- What is the internal communication system?
Distributed Communication

Communication System Partitioning—Example 1
Several high level operation interfaces and communication elements located in the central control room area must communicate with each other at moderate load of message traffic.

The message communication has generally three levels.

1. A load bus or subnet
2. A local network in the central control room
3. A plant wide communication
Field-bus Reduces Wirings

Fieldbus Control and Monitoring Significantly Reduces Field Wiring
Benefits of Distributed Communication

A comparison between non-distributed and distributed Communication facility reveals the following benefits:

• Cost of wiring is reduced significantly
• Flexibility of making changes in software & firmware increases
• Less time to implement a large control system
• The control system becomes more reliable due to significant reduction of physical connection

Typical worries for Distributed Communication

Existing one-to-one configuration had no time delay. Sharing the data buses may have some delay! The answer is NO

Overloading of channels!

The answer is Overloading may take place.
Requirements of Communication System

1. Minimize time delays and maximized security of transmission.

2. Communication between various modules and HLHI/LLHI should be effective.

3. Communicate set points, operating modes and control variable from HLHI devices.

Additional Requirements

- Download control configurations, tuning parameters and user programs for HLHI.
- Transmission of information from data input/output units to high level computing devices.
- Synchronization of real-time and elements of machines.
- Transfer large data for high level processing take trends and searching applications.
Communication Issues

1. Maximum permitted size of the system
2. Maximum acceptable time
3. Maximum allowed delay in systems
4. Communication rate
5. Rate of undeleted errors occurring in the system (due to noise)
6. Sensitivity to traffic loading (traffic of signal load)
7. System scalability (expandable/ large/ small)
8. Fault Tolerance (failure of one channel should not effect other)
9. Interacting requirement (protocol issues RS 232c, RS 422, IEEE 488, smart)
10. Ease of application/ maintenance
Smart Hubs In Networks

- Full duplex communications between switched hubs
- Multiple simultaneous conversations w/o interference
- Little chance for collisions to delay signals

Interference

Smart Hubs in Networks Allow Any Two Stations to Talk Without
Network Topologies

Topology refers to the structure of physical connections among the elements in a network.

Some of the popular topologies are:
- Star
- Bus
- Mesh
- Ring
Network Topologies (Cont’d)

![Network Topologies Diagram](image-url)
Network Topologies (Cont’d)

“Star” is simplest but its failure shall cause the entire sub network to stop functioning

“Bus” topology is similar to star but the same problem exist i. e. sharing one bus

“Mesh” topology tries to overcome the limitation of star topology and is generally adopted in industry

“Ring” or “loop” topology is a special case of Mash topology that provides connections between active switching devices in a loop sequence
The Way Ahead-- Management Executive Systems

Boundary between Information and Control is Not Smooth!
The Opportunity in Stochastic Process Control

Prof. Dr. Shahid Naveed

Lecture -6
1. Objective of SPC
2. Basic Concepts of SPC
3. Techniques & Analysis
4. Common & Special Causes of Process Deviations
5. Stable Process
6. Trend Analysis
7. Process Capability
What statistics can we calculate from this data?

How do we relate variability to process performance?
Calculate the process performance using the **distribution**, not the average value of the key variable!
In Nutshell Squeeze the Variability is the 1st Objective
Another Example

Example of Benefits of reduced variability for chemical reactor

Goal: Maximize efficiency and prevent fuel-rich flue gas
Which operation, A or B, is better and explain why.
2. Basic Concepts for SPC

- **What is a process?**
 - Converting raw materials into products

- **What is control?**
 - Achieving the objectives in the desired manner

- **Have we done the job correctly?**
 - Only Historic Data can reveal

- **Can we do the job more consistently?**
 - Through online statistical monitoring/trend analysis
SPC Related Queries

• Are we doing the job correctly?
 • Detection, prevention, confirmatory to design aspects

• Can we do the job better?
 • The process and human capability is under question

• Can capability/ quality be enhanced?
 • Through process improvement and training
3. Techniques & Analysis

- What statistical tools are available?
 - Process flow Charts
 - Check or tally charts
 - Histograms
3. Techniques & Analysis (cont’d)

- Graphs
- Pareto Analysis
- Cause & effect diagrams
- Scatter diagram
- Control Charts
What is a Control Chart?

![Control Chart Image]
What is a Control Chart?
4. Objective of Control Charts

• Process monitoring for extended periods

• To identify **common causes** of process variation / deviation

• To identify **special causes** of process variation/ deviation
Common Causes of Process Variations

- Inherent or natural variation in the inputs and transformation activities.

How to identify them?

- Repeatable, predictable, non-symmetric or random.
- Global to the system and originate from many sources.
- Lie within the process band within which a process is expected to vary.
These are variations due to process inputs and transformation activities that occur irregularly. They are not part of the system but originate from outside.

How to identify them?

They are localized to an operator, shift or piece of equipment.
The general policy to improve process monitoring is to **minimize common causes and eliminate special causes** of disturbances.

Common Causes can be minimized by:

- Reduction in variability in inputs and transformation activities
- Improve the process
- Improve work practices
- Improve operating guidelines
Strategy of Process Improvement

Special Causes need to be attended specifically

- Whenever a control chart signals a special cause, search immediately for what was done differently on that instance.

- The discovery of special cause of variation is usually the responsibility of someone who is directly connected with the process.

- Do not make a fundamental change in process, identify and permanently remove the special cause to prevent the recurrence.

- If a special cause can not be pin-pointed make process adjustment.
5. What is a Stochastic Stable Process?

• A Process is said to be in a state of Stochastic Stable Control if the distribution of measurement data has the same shape location and spread over time.

• In other words, a process is stable when the effects of all special causes have been removed from a process, so that the remaining variability is only due to common causes.
A process is said to be *unstable or NOT in a state of statistical control* if it changes from time to time because of a shifting average, or shifting variability, or a combination of shifting averages and variation.
Trend Analysis leads to answer the queries like

1. Are we in control?

2. Do we continue to be in control?

and is instrumental to

1. Fault diagnostics

2. Capability enhancement
Trend Analysis (cont’d)

After a process is recognized to be out of control trend analysis is employed to search for the sources of problems.

The chart is divided into three zones. Zone A is between +/- 3σ, zone B is between +/- 2σ and zone C is between +/- 1σ.

The following eight tests can be performed.
Test 1

Pattern: One or more points falling outside the control limits on either side of the average.

Problem source:
- Equipment breakdown
- New Operator
- Drastic change in raw material quality
- Change in method, machine, or process setting

Action:
Go back and look at what might have been done differently before the out of control point signals.
Test 2
Pattern: A run of nine points on one side of the average.

Problem source:
This may be due to a small change in the level of process average. This change may be permanent at the new level.

Action:
Go back to the beginning of the run and determine what was done differently at that time or prior to that time.
Test 3

Pattern: A trend of six points in a row either increasing or decreasing

Problem Source:
- Gradual tool wear
- Change in characteristics such as gradual deterioration in mixing or concentration of a chemical.
- Deterioration of plating or etching solution in electronics or chemical industries

Action:
Go back to the beginning of the run and search for the source in procedure
Test 4:

Pattern: Fourteen points in a row alternating up and down within or outside the control limits.

Problem source:
- Sampling variation from two different sources such as sampling systematically from high and low condition with two different averages.
- Adjustment is being made all the time (over control).

Action: Look for cycles in the process, such as humidity or temperature cycles or operator over control of process.
Test 5

Pattern: Two out of three points in a row on one side of the average in zone A or beyond.

Problem source:
- This can be due to a large, dramatic shift in the process level.
- Provides early warning, particularly if the special cause is not as obvious as in the case of Test 1

Action:
Go back in time and determine what might have caused the large shift in the level of the process.
Test 6
Pattern: Four out of five points in a row on one side of the average in zone B or beyond

Problem source: This may be due to a moderate shift in the process

Action: Go back three or four points in time to find the root cause.
Test 7
Pattern: Fifteen points in a row on either side of the average in zone C

Problem Source:
- Unnatural small fluctuations or absence of points near the control limits
- It may appear to be good control but this is not.
- Incorrect selection of subgroups.
- Sampling from various sub-population and combining them into a single subgroup for charting
- In correct calculation of control limits

Action: Look very close to the beginning of the pattern
Test 8
Pattern: Eight points in a row on both sides of the center line with none in zone C.

Problem source: No sufficient resolution on the measurement system

Action: Look at the range chart and see if it is in control
6. Process Capability

Understanding Capability!

- Whether the process is capable of meeting the requirements?
- Whether the process is meeting the requirement at any point in time?
- Can the parameter be corrected or adjusted when it is not meeting the requirements?
Process Capability

The capability of a stable process is defined in terms of a distribution. It is the spread of all values of the process distribution.

Capable Process (Cp)

Cp measures the effect of the inherent variability. Cp is defined mathematically as

\[
C_p = \frac{USL - LSL}{6\sigma}
\]

Where:
- USL = upper specification limit
- LSS = lower specification limit

Allowable process spread

Actual process spread
Process Capable but not Centered

The Control implementation is erring towards on lower side. (Or underutilized)
One of actions may be to integrate designed experiment to gain additional knowledge on the process and designing control strategies. Alternatively the production specifications maybe altered.
A process that is centered and capable.
Capability index (Cpk)

The long term objectives of Cpk is to continuously improve process and reduce variability

Mathematically defined as:

\[
C_{pk} = \text{Minimum \{USL- X / 3\sigma, X-LSL/3\sigma\}}
\]

Where X= overall process average

Cpk is applicable for process centering.

If for a two sided specification the capability index (Cpk) is equal to or greater than 1.33, then the process may be adequately centered.

Cpk may be employed even when there is only one sided specification. This is used to determine the percentage of observations out of specification.
A process is capable ($C_p \geq 1$) if its natural tolerance lies within the engineering tolerance or specifications. The measure of process capability of a stable process is 6σ where σ is the inherent process variability estimated from the process.

A minimum value of $C_p = 1.33$ is generally used for an on-going process. This ensures a very low reject rate of 0.007% and therefore is an effective strategy for prevention of nonconforming items.
Stochastic Process Control has great Opportunities leading to Production, Quality Assurance, Fault Diagnostics, Capability Enhancement etc.

Make Use Of the Opportunity before it is lost
Open for discussions